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COMPUTATION OF THE SOUND ENERGY RADIATED FROM

TURBULENT FLOWS*

J. C. Rotta

1. Introduction

The wave equation developed by J. M. Lighthill [1] forms the

foundation for determining the acoustic energy radiated by turbu-

lent fields. This equation states that the velocity fluctuations

of a turbulent field in a medium at rest produce pressure and

density fluctuations just like pulsating quadruples known from

classical acoustics. However, the most important problem is to

relate the intensities and distribution of the acoustic source

terms to known parameters of the flow field. The strict solution

of this problem is identical with the solution of the turbulence)

problem.

Many authors have attempted to obtain information regarding

the properties of turbulent fields using theoretical methods.

However, only a few papers are known in which the investigations

led to quantitative results. The paper given here deals with

the problem of determining the acoustic source distribution from
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October 4 - 6, 1972. Paper No. 72-074.

German Research and Experimental Institute for Aerodynamics
and Space Flight E. V. Aerodynamic Experimental Institute,
Goettingen.
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foreign text.



the distribution of the average velocity. This problem has

considerable practical importance. A request was made to compl'e-

ment experimental investigations of the acoustic source distri-

bution in turbulent jets (see the work of F. -R. Grosche [2])

by theoretical work.

The problem is solved in two steps. In the first step, the

acoustic sources are determined from the solution of the Lighthill

equation. An approximate method is used to determine the solu-

tion as a function of other field variables of turbulence, in

particular, the kinetic energy of the velocity fluctuations and

a characteristic length measure. In the second step, the vari-

ables are calculated using the transport equation for the kinetic

fluctuation energy and other relationships, which are assumed to

be known from the distribution of the average velocity.

2. Solutions of the Lighthill Equation /5

We are interested in the far field of the acoustic energy

radiated by a region of turbulence having finite dimensions. Let

P IX/X, ICly (1)

be the acoustic power, which is radiated by a volume element

dy (= dy1 dY2 dy3) having the position y per unit of solid angle

in the direction of the vector X. The quantity-X = ]'XIis the

magnitude of the distance'from the observation point tiothe tur-

bulence region, and we assume that the dimensions of the tur-

bulence region are small compared with X.

When the quantity P (X/X, y) is known, the total acoustic

intensity at the position X is obtained by .irtegration over the

entire turbulence region.
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Using the Lighthill wave equation, the solution of which is

represented in terms of retarded potentials, we obtain the fol-

lowing approximation for P (X/X, y) (see H. S. Ribner [3, 4]):

93 g3

pX' . X. X ( v.) (vl I )
1)(S/S1. C . .P (X__'/Xok ___y_____t_ dr

- isX x2 4 2 2 (2)

This notation is based on the representation in the Cartesian

coordinate system Xi (i = 1, 2, 3). The Einstein summation con-

vention is adapted for indices which occur twice [X = (XiXi)l/2].

Vi refers to the velocities (average value and fluctuation value)

at thej location y:, afdiv are the velocities at y + r. The inte-

gral extends over the volume of the entire r-space, dr = drldr2dr3 

In addition, ao is the speed of sound, and po is the density of

the surrounding medium. Equation (2) contains the following

assumptions:

1. In the medium surrounding the turbulence region, the

small effects of heat conductivity and viscosity

are ignored.

2. Outside of the turbulence retion, the motion is so small /6

that the acoustic sources in the Lighthill equation can

2 2
be set equal to zero (d T../6t 0).

3. The average temperature in the turbulence field is_not 1

very different from the temperature of the surrounding

medium.

4. The deviations from the adiabatic state conditions

in the turbulence field are ignored.

3



5. The Reynolds number of the flow is large.

1/2
6. The Mach number is small (Ma = [v ] /a).

When the usual division of the velocities into an average

value u. and a fluctuation velocity ui is made in Equation (2),

V. = Ui + i(3)_ 1

we obtain two different components for the radiated acoustic

energy. The first part is produced only by interactions of

fluctuation velocities, and is called "eigensound" (self noise).

The second part is produced by interactions of the turbulent

fluctuation velocities with the average velocity. This part is

called "shear sound" (shear noise).

2.1._ Selfnoise

The summations of expressions of the type Xivi/X, Xjvj/X,

etc., contained in (2), state that only,-velocity components|

in the direction of the vector X have an effect. It is there-

fore appropriate to write the following for the self noise

2 2 2 2
0. !

e_(X/X2) · 2 d (4)

where u and u are the respective velocity fluctuations in, /7

the direction X. I. Proudman [5] gave an estimate of the self

noise radiated by an isotropic turbulent field. Such a turbulent

field radiates sound of equal intensity in all directions, so

that Pe is independent of X/X. From a dimensional analysis, we

can specify the form

4



p 2 
~.1 ' o a (U)

e -2 s 4 (7 L
i (5)

a I
0

where u2 is the mean square value of the velocity fluctuations

which is equal in all directions. L
1

is the integral length

measure (integral over the two-point correlation function)

(see [6]).

L
1 f=f (r) dr. (6)

o

The calculation of the quantity a requires a number of assump-

tions and long algebraic calculations, which do not have to be

repated here. First, the cumulants of fourth order are ignore._

so that the correlations of four velocity components can be ex-

pressed as products of correlations of two velocity components

each. The time derivatives are determined using the Navier-

Stokes equations of motion. Again, the fourth order cumulants

are ignored in order to eliminate the fluctuations of pressure

in the equations. According to Proudman, we find the following

results for a steady turbulence field

a gf (fG)2 x 4 'dx ' 1tf5 O dx'

.0' ' 0 X

2 l4 dx ~ - s
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and x = r/L1. The numerical evaluation of this formula resulted

in a = 37.5, using the function)f tabulated by I. Proudman [7]

for very large Reynolds numbers.

2.2.- _Shear noise

For the case of shear noise, we assume a simple, steady

shear flow in which the average velocity u has the direction of

the x1 axis and is a function of x2. If (3) is substituted in

(2), then only those components in which i, j, k or Z take on

the value 1. will make a contribution to the shear hoise. H. S.

Ribner [4] showed that most of these terms drop out, because of

continuity or symmetry.

We obtain the following from (2) for the radiated acoustic

power:

2

o

+ 4 I 4 (J 3 ) i dr (9)

+ 4 

Again, the flow velocities must be taken at the point y and

quantities having a bar must be evaluated at the point y + r.

If we also assume the isotropic tensor form for the corre-

2 22,2 
lation function (d u./6t)(62u/6t2), then we have1 9

Strictly speaking, it/ is sufficient for the correlation function
to have an axisymmetric tensor form with the axis x2.

-.
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;2~~~ ra ' -_o# l/9
: ·U II "

..... ' .3 1. I dr
lt . (10)

Ot 0 Ot 2 Ot

In this way this expression simplifies (9) to|

4 2 .2

- o I 13 1----

(X/Xy) 2-- Ju - -- dr ' (11)
s 2' 5 4 2 2

4T a x Ot -t
o 0

According to the present state of knowledge on the structure of

turbulence, the assumption of an isotropic form of the twojpoint\

correlation seems to be almost the only way which will allow a

quantitative evaluation of the integral. The direction depend-

ence of Ps is then only expressed in the factor

4 2 2
x1 + 1 3

k (X/X) = X 4. (12)

(O < k < 1). In the case of axisymmetric flows, the direction

of the vector X is described by angular coordinates. It is then

possible to average over the azimuth angle, and we obtain the

directional dependence obtained by Ribner [4].

-col + cos
(X/X) co.;4+ cos2 (13)

if O is the angle between the vector X and the jet axis.

The integral expression can be represented in the following

form based on dimensional analysis

.2 2 

11'U 0 U -d)
f uu 2 dr (14)

tCL

where the coefficient B depends on the distribution of the aver-

age velocity. In contrast to a in (5), it is a function of /10

7



position for a given flow. In this way, Equation (11) is re-

duced to the form

Ps C, /x. y) i-' (/x.) .- 32 ( (15
a 4 , 10

The calculation of B uses the same assumptions and restrictions

as were used for a in (5). We can again use the relationship

given by Proudman. After a few calculations (see Appendix A),

we obtain

with

= 2 f1 (.. .. .... (Y, r) 4' ( .F -(x)} x dx

co

- x

¢ (y' r) :[ (y+
L

1 xz) + u ( 2- L xz) ]

. S[ u (y)dz

)

(16)

(17)

(18)

(19)

u(y+rL xz) + U (y- lxz) 2
'02 (5y r) fzdz .. (20)

S2 ( y °
)

=

.~r (Y) 6

G and f have the same meaning as in Equations (7) and (8). The

numerical evaluation is again based on the correlation function

given by Proudman [7] for large Reynolds numbers.

As can be-s)een from Equation (19) and (20), the distribut-

tion of the average velocity influences the value of B, in
. . . N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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particular because of the local curvature. For negative /11

6 2/6y2 , that is, along the free jet axis, we find positive

S. For positive 62u/6y2, i.e., at the outer edge of the jet, we

find in part very large negative B values, which do not have any

influence because of the low fluctuation energy and low average

velocities at this point.

3. Kinetic Energy of the Fluctuation

Velocities

In the previous section, we treated the dependence of the

radiated acoustic power on the kinetic energy of the velocity

fluctuations and an integral length measure. We will now inves-

tigate the question of how the distributions of the kinetic

fluctuation energy and the length measure are related with the

distribution of the average velocity. Recently, many attempts

have been made to calculate the distributions of the average

velocities using the transport equation for the kinetic fluctua-

tion energy or other transport equations. These methods provide

as a side result the field quantities which are required for

estimating the acoustic sources. However, there is also the

possibility of calculating the distribution of the kinetic fluc-

tuation energy, if the distribution of the average velocity is

known. The principle is to calculate the normal component of

the average velocity using the continuity equation and to also

calculate the shear stress distribution using the equation of

motion. The quantities obtained in this way are then introduced

in the energy equation. The transport equation for the kinetic

fluctuation energy q /2 = (u + v + w2 )/2 is as follows for

large Reynolds numbers using the uisual boundary layer simplifi-

cations (see [6])

9



- (( _(ri _ - 6u .I1 Z
- (q 2 + ,, v . ++ -- ,v _- + v )+-vby by F- by 2 (21)

where

j = 1 for axisymmetric flows

and /12

j = 0 for plane flows

and we have set p = 1.

If we desire to calculate the distribution of q2/2

for known average velocity fields and known Reynoldsstress - u'v'

then it is necessary to introduce trial solutions for the turbu-

lent energy dissipation c and for the turbulent energy diffusion

2
(q /2 + p)v. We can use the following relationships for these

two quantities

_ 3/2

- C-/ /I,2 1 ,1 (22)

( 2/2 + p)kv - /L '(q /2)/y (23)
q (23)

where L, the length measure of turbulence, is a field variable

and k and c are dimensionless coefficients. In order to be
q

able to solve Equation (21), c and kq must be known, as well as

the distribution of L. .The system of equations is determined by

adding another relationship for u v, which however cannot contain

any other flow parameters as variables. We will use the follow-

ing exchange trial solution of L. Prandtl [8] for this rela-

tionship

10



uv =-k I2 r !U/b 1 (24)

where k is another dimensionless coefficient. If we assume that

k is known, then-the quantity /QC 2 liz-i calculated from the velo-1

city field by inverting Equation (24). This means that L can be

eliminated from (22) and (23), so that (21) is transformed into

a partial differential equation for q2/2 after (22) and (23) are

introduced. We obtain the ffollowing relationship from the re-

quirement that in the vicinity of fixed walls, the relationship

must be compatible with the universal velocity law.

It c-. (25). 

We reported on this method of calculating the kinetic fluctuation

energy and the length measure elsewhere [9]. As example, we

treated the fully developed pipe flow, the plane asymptotic wake

flow and the plane free jet in a medium at rest. Here we will

give the results for the round free jet in a medium at rest and

the results for the free jet boundary. Details of the calcula-

tion are described in Appendix B.

4. Results and Discussion

Figure 1 shows the distributions of the kinetic fluctuation

energy and of the length measure for round free jets in the di-

mensionless form as a function of y/b for various values of the

coefficient kq of energy diffusion. ul is the average velocity

along the axis, and b is the radius at which u = u
1
/2. In the

inner region, the distributions only slightly depend on k . As

k increases, there is a greater distributionof the energy. The
q

11



calculated values of q2/(2u2) are about 20% lower than those

determined in measurements of I Wygnanski and H. Fiedl6r [10].

Figure 2 shows

the distribution of

q 2/(2u ) and L/x for
0

the free jet boundary

as a function of

i = ay/x, where a =

121), u is the velo-

city at the nozzle

exit. The distribu-

tion of the average

velocity is also

shown. The variation

of k has the same
q

effect as for a free

jet. The values of

q2 /(2u2 ) agree well

with the experimental

results of I. Wyg-

nansky and H. Fiedler'

[ll].

Z2

2u
I2u,

I I

!LA

. 8.
. . . .. . ._

_--

12 /6 ~Oy~21
12 16 2.0 2.4

- . y/b

Figure 1. Round free jet in surround-
ings at rest b/x = 0.88; c = 0.165

a - distribution of the fluctuation en-
ergy; b - distribution of the length

measure

The distributions of the length measure are approximately

constant over a wide range, but increase quite suddenly near the

edges. This phenomenon becomes more pronounced-, th-esmaller k
q

As already determined in an earlier work_ [9],the agreementl

between computation results and experiment is good in many cases.

12



In other cases it is not as
good. It is possible that
better results could be ob-
tained if the exchange law

(24) is replaced by the trans-
port equation for the Rey-
nolds shear stress. This

question remains to be in-
vestigated.

When calculating the

acoustic source distribu-

tions, it is necessary for
the length measure L in the
energy equation, i.e., in

Equations (22), (23), and
(24), to correspond to the
integral for the transverse Fi

(U
correlation function as given
in the definition. Therefore,
it will be half as ladrge as L1, the ii

relation function. Therefore, we set

-0,.8 O
.... £ 

gure 2. Free jet boundary
0-= 0), a = 12, c = 0.165/

ntegral over the length cor-

-L1 = 2ULg (26)

The mean square average of the velocity fluctuations which occur
in (5) and (15) is expressed in terms of the kinetic energy of
the fluctuations:

2 2-
u = -I cl¢/2 . (27)

The quantity P (X/X, y) is transformed into a suitable form for
a dimensionless representation of the radiated acoustic energy.
For the free jet, we write

13
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for the free jet boundary

· 8
p 11

PL'(X/_X - °1 k(X/X)I(y/x) I (y29)
a x
0

where the directional coefficient k (X/X) for the self soundy

is k E 1.

Figure 3 shows the dimensionless distributions of the self-

soundf'sources I
c

(y/b) and the shear soundfsources I
s

(y/b). The

sound sources concentrate along the jet axis, as was to be ex-

pected. The shear sound has a much smaller intensity according

to these calculations than does

the self sound. I This is in

contradiction to the estimates 3,.11 1,5104--

of H. S. Ribner [4], according I S

to which the peak value of the

shear sound/is approximately 2x,10 1 X10' 6

equal to the peak value of the

self sound.,l Because of the
l· 0' .05Kvery different assumptions,

it is not possible to make a -

direct comparison.
0 05 O lb 1,5

The calculated distribu-

tions of the sound sources are Figure 3. Distribution of

given in Figure 4 for the free the acoustic sources in theround free jet, k = 1, c =
jet boundary. The self noise 0165

is produced in a relatively

14



narrow region in which the

gradient of the averaged velo-

city is the steepest. The

shear sound'sources I have
_. _ s

positive as well as negative

values because of the course

of B. Compared with the self

sound sources, they are con-

siderably smaller than in the

case of the free jet. This

behavior must be attributed

to the fact that the sign

change of B (approximately at

62u/6y 2 = 0) occurs in the re-

gion of maximum fluctuation

intensity. The following re-

marks can be made regarding

these calculations:

i

I

il _

I!

i

-1.6

I

Figure 4. Distribution of the
acoustic sources in the free
jet boundary, a = 12, k = 1,

q
c = 0.165

1. The influences of convection of the vortex structure

and of refraction by the flow field were not considereld

in the results discussed above. This means that ex-

tremely small flow velocities have been assumed. As

Lighthill, Ribner, and others have shown, these effects,

which change the intensity and direction characterics of

the acoustic radiations significantly, can be approxi-

mately taken into account by means of correction factors.

We will not discuss the details:of this.

2. The division into "self sound" and "shear sound" made in

Equation (4) and (9) is somewhat arbitrary. The corre-

lation functions in (4) and (9) depend implicitly on

the average velocities and their derivatives becausje of

15



equations of motion. If a calculation is made according

to I. S. F. Jones [12], in which the time derivatives

under the integral of (2) are substituted into the equa-

tions of motion before decomposition of the velocities

into a mean value and a fluctuation value, one obtains

completely different results for the shear sound than

what was obtained above, which was based on Ribner's l

work.

3. Reservations about the preceding calculation can be made

based on the fact that the average velocity was ignored

and isotropic distributions were assumed in the deter-

mination of the time derivatives. One point of view

which supports these assumptions is the fact that 75%

of the calculated self sound emerges from an area in

which the correlation function f is larger than 0.76.

As is well known, and assuming large Reynolds numbers,

there is a universal and locally isotropic, structure

which is only influenced slightly by the average velo-

city. Conditions are not as favorable for the shear

sound, but the contributions for this case are relatively

small. These arguments do not mean that no substantial

contributions could be made, because of the effect of

averaged shear velocities and the consequent,1 change in

the turbulence structure. The simplifications made are

accepted because at the present time they represent th]

only way of progressing towards quantitative results.

4. Acbording to experimental investigations, there are other

ordered types of motion in addition to the unordered tur-

bulence motion. Such vortex shapes are quite clear in

flow photographs within a mixing region-having large

density differences. G. Brown and A. Roshko [13] have

16



shown this. According to the work of A. Michalke [14],

H. V. Fuchs [15], as well as K. A. Bishop et al. [161,

these motions contribute significantly to sound produc-

tion, especially at high flow velocities. These con-

tributions are not described by the methods mentioned

here. Unfortunately, we were not able to use the theo-

retical developments of Michalke. We hope that perhaps

later on it will be possible to construct a useful wave

model for the acoustic production, using turbulence

variables established by means of the transport equa- /17

tions for kinetic energy and Reynolds stresses.

In light of these arguments, our investigations can only

be looked upon as a first attempt of determining the acou'stic

energy radiated by turbulent fields, once)the corresponding

distribution of the average velocity is known. We hope that we

have generated some interest in this problem. Further work,

using refined assumptions, islnecessary.

5. Summary

We calculated the acoustic source distributions in turbu-

lent flows for the case where the average velocity distribution

was known. The basic idea is to determine characteristic varn-

ables using the transport equation for the kinetic energy of the

fluctuations and other relationships. These characteristic

variables describe the turbulence structure. Starting with the

Lighthill equation', we expressed the radited _ acoustic energy as ,A

function of the kinetic fluctuation energy, an integral length

measure and the distribution of the average velocity. These

calculations in which the relationships for isotropic turbulence

fields were used continue the investigations of I. Proudman.

As an illustration, we applied the relationships to a round free

jet in a medium at rest and to the free jet boundary. The

17



calculated distributions of kinetic fluctuation energy of the

length measure and the acoustic sources are discusssed and a

critical evaluation of the physical assumptions is made.
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APPENDIX A: SHEAR NOISE /20

When the quantity B is determined in (15), we will for the

most part use the relationships of I. Proudman [51. The equation

numbers of this paper [5] are given by means of double brackets.

We start with the isotropic, tensor form

2 2 2
9 2 j - (A.1)') 1 - ' ,1 I

u 0tU b1t l ((5.2))

i is a dimensionless function of the distance r.. Primed values

refer to derivatives with respect to r. Then we have

) 02 )+ 'd+ 4 6 )] ((5.17A.2)b' p - u ~1 (f"d + q, ) +f (":+ 4
T2 7t rr dr r (5.17))
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and also, according to ((5.9))

(6, I=.. 22 d fU2t"y) v' = (U) f4- (f" .- 4-- fG
(is ) ' - .(u . S..dr Jr ' 3 .. (A-3)

is the expression defined by Equation (8) (x =r//L1).

It follows

If these

) , - J2 , dr (u2) fG d

r 1 x

relationships are substituted in (A.2), we obtain

.( 6l 2 )L 1

with

F' (x) =dx - Cr(dx J fdC,+ fd [x dx(fG)+

Also, we find

2 2.o .. 3
2 

,1. t( ) =(u) (; x )

Dt2 Dt2. V 2r [x F(x)] j }

and for the special case

After substituting (A.5) and (A.7) in (A.1), we then find

t2 bt2. L 2

and for the special case

20

where G

(A.4)

(A.5)
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(A.6)

(A.7)

(A.8)



2 2 3 2

1 2xL1

In order to carry out the integration of (14), we introduce

spherical coordinates:

r r sin e sin ,.

r 2 = r cos , (A.10)

2
dr- r sill 9 dod 9dr .

Here c varies over the range between 0 and 2 ' and.O varies over

the range from 0 to Tr. We will make the substitution z = cos

so that

rl r2 (1-z2 )siln l ' 

r = r (A.)

dr = -r 2 d z

and z runs from 1 to - 1. We can first carry out the integration

over c. Since because of the continuity equation

_ _

-dl - 0 , (A.12)

we introduce the following auxiliary functions for the integra-

tion over z:
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1--

rr" (U.+ t'9) *t u (' _ l
01U( " ' r) 1 - dz 

~~1 - - ~~~~~(A.13

02(', r). = ' '+ '( 22) ] 2 d (A.3)

o u. ()

and we then obtain the expression given in Equation (16) for B.?

APPENDIX B: KINETIC ENERGY OF THE FLUCTUA-

TIONS

1. Round free jet- t

The well developed round free jet propagates linearly

with distance from the exhaust point, and the distributions of

the statistical quantities are similar at all intersection points

perpendicular to the jet axis. The reference velocity u1 is

the averaged velocity along the axis and the reference length is

the radial distance from the axis, in which the average velocity

u equals u
1
/2. This means that

b = a x (B.)
(B.1)

According to experimental results, we have set a = 0.088 for the

constanti. Using n = y/b, we describe the average velocity by

u = u
1

f (n). The same relationship for f (n) was used as for

the plane free jet (see [91):

fi) = exp l - 0,6749 2 (1+0,02 6 9 7 4)j (B.2)/
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We assumed the following tr'ial solutions for the fluctuation

energy q 2/2 and the length measure L

2 2
(12 /2u ; = ((B.3)

where i (n) and X (rn) are dimensionless functions of n'. ) Using

the similarity trial solutions, the partial differential equa-

tions for the average velocity and the fluctuation energy become

ordinary differential equations, which can be solved using a

Runge-Kutta method (see [91).

2. Free jet boundary

The width of the turbulent mixing zone of a plane free jet

boundary also grows linearly with distance from the exhaust point.

The reference length is the distance x from the exhaust point,

and the reference velocity is the exhaust velocity u
o
. The dis-

tribution of the average velocity u is assumed in the form

U itI (,) (B.4)

with i = ay/x. a is a constant. We assumed the following ap-

proximation for F (i)

1' [- 1 2 erf(0,9 t)] lrl 92( 1)l

(B.5)

+ o, 034 expi- 2 ) [l erf I 0, 8(-0, 8)1]

This relationship agrees well with the measurements of H. W.

Liepmann*, if we-set a = 12. In addition, we introduced the

following similarity trial solutions:

See H. W. Liepmann, John Laufer Investigations of Free Turbu,
lent Mixing, NACA TN No. 1257 (1947).
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v u

Uv = u . ( ),

q/2 = u 2 #)(g) (B.6)
0

L = xX () .

With these trial solutions, the partial differental equations for

the flow are again reduced to ordinary differental equations,

which can be numerically integrated using a Runge-Kutta method.

Translated for National Aeronautics and Space Administration un-
der contract No. NASXw 2483, by SCITRAN, P. 0. Box 5456, Santa

Barbara, Californian, 93108
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